A Backpropagation Neural Network Approach For Ottoman Character Recognition
نویسندگان
چکیده
The Ottoman Empire established in 1299 and continued 6 centuries covering an area of about 5.6 million squared km. The Empire left a large collection of valuable archives interesting to historians from all over the world. Investigation and understanding these documents will shed light on the history of the world. In order to achieve access of the considered information by worldwide scientists, it is essential to translate Ottoman characters into Latin alphabet. Thus, we aimed to recognize the Ottoman characters using Artificial Neural Network (ANN) and compared it with Support Vector Machine (SVM) approaches. We used printed type of Ottoman scripts in image acquisition. Pre-processing such as normalization and edge detection were implemented. Multilayer perceptions of ANN were trained using the backpropagation learning algorithm. As a result of our research, we are able to classify the Ottoman characters with 85.5% classification accuracy using the proposed recognition system.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملOptical Character Recognition Using Artificial Neural Networks Approach
The recent advances in computer technology many recognition task have been automated. OCR, Optical Character Recognition is a scheme of converting the images of typewritten or printed text into a format that is understood by machine. The goal of OCR is to classify the given character data represented by some characteristics, into a predefined finite number of character classes. For the recognit...
متن کاملMultifont Ottoman Character Recognition
Ottoman characters from three different fonts are used character recognition problem, broadly speaking, is transferring a page that contain symbols to the computer and matching these symbols with previously known or recognized symbols after extraction the features of these symbols via appropriate preprocessing methods. Because of silent features of the characters, implementing an Ottoman charac...
متن کاملHigh Accuracy Myanmar Handwritten Character Recognition using Hybrid approach through MICR and Neural Network
This paper contributes an effective recognition approach for Myanmar Handwritten Characters. In this article, Hybrid approach use ICR and OCR recognition through MICR (Myanmar Intelligent Character Recognition) and backpropagation neural network. MICR is one kind of ICR. It composed of statistical/semantic information and final decision is made by voting system. In Hybrid approach, the features...
متن کاملA Novel Approach of Handwritten Devanagari Character Recognition through Feed Forward Back Propagation Neural Network
Handwritten character recognition plays an important role in the modern world. It can solve more complex problems and makes human’s job easier. The present paper portrays a novel approach in recognizing handwritten devanagari character through feed forward back propagation neural network. All the experiments are conducted by using the Artificial Neural Network tool of Matlab.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 15 شماره
صفحات -
تاریخ انتشار 2009